

Università degli Studi di Bari Aldo Moro Anno Accademico 2019/20

Scuola di Specializzazione in "Fisiopatologia della Riproduzione degli Animali Domestici" Embryo quality assessment Prof. Maria Elena Dell'Aquila Department of Biosciences Biotechnologies and Biopharmaceutics University of Bari Aldo Moro - Italy

Summary (1)

- Historical aspects
- Physiology of embryo development in mammals
- Embryo metabolism
- Embryo genome activation (EGA)
- In vivo embryo culture systems
- In vitro embryo culture systems

Historical aspects

• Sreenan, 1968; Sreenan e Scanlon, 1968

(first reports of bovine in vitro embryo culture up to the blastocyst stage)

• Adams, 1968

(first report of bovine in vivo embryo culture in rabbit oviducts up to the hatching blastocyst stage)

• Gandolfi, 1986; Gandolfi and Moor, 1987

(first reports of bovine in vitro embryo culture up to the blastocyst stage on oviductal epithelial cell monolayers)

Studies on embryo/oviduct biochemical interactions

Physiology of embryo development in the pre-implantation period

- Oviductal microenvironment
- Stages of embryo development
- Cleavages
- Morula formation and compaction
- Blastocyst formation
- Embryo mortality

Stages of embryo development within the oviduct

The oviductal environment

Recently decifered oviductal vesicles content in proteins, mRNA and small ncRNA across the estrous cycle in the cow (**13.197 genes**)

Stages of human embryo development

2PB 2PN

4 cell stage

8 cell stage

morula

blastocyst

Assessment of bovine embryo quality as a model for human embryo development

The hatching process in a bovine embryo

Embryo implantation to the uterine wall

Times of arrival in the uterine cavity and implantation in different species

Species	Arrival (d)	Implant (d)
Bovine	3-4	12
Bitch	5-8	13-17
Queen	5-8	13-17
Sheep	3	15
Mare	5-6	25-30
Sow	2	2
Woman	4	5-6

Causes of embryo mortality

- Genetic factors:
- chromosomal abnormalities
- single gene defects
- Maternal age
- Endocrine factors
- Nutritional factors
- Stress factors
- Internal environmental factors
- External environmental factors

Embryo metabolism

Figure 1. Changes in the metabolism of cumulus oocyte complexes (COCs) and preimplantation embryos. 2PN = 2 pronuclei; GJC = gap junction communication; GV = germinal vesicle; HBP = hexosamine biosynthetic pathway; ICM = inner cell mass; OxPhos = oxidative phosphorylation and TCA cycle = tricarboxylic acid cycle.

Embryo metabolism: the importance of glucose levels

Embryo metabolism: Fatty acid metabolis (Prates et al., 2014)

Embryo genome activation (EGA) and the developmental arrest

- Embryo genome activation, in different species, occurs at different developmental stages
- Mouse, Goat, Hamster: 2 cell stage
- Cow, Sheep: 8-16 cell stage
- Pig: 4 cell stage
- Human: 4-8 cell stage

Embryo differentiation

Hierarchic organization of genes coding for factors involved in the differentiation processes:

- Maternal effects genes (expressed in the stages comprised from oocyte maturation to initial embryo cleavages)
- **Gap genes** (expressed in subsequent stages and coding for basic cell functions, such as nucleus functions, cytoskeleton elements, membrane channels, ion transporters, surphace or secretory proteins, growth factors, receptors, ...)
- Genes for segmentation and embryo polarity (genes controlling the formation pattern of the embryo antero-posterior axis)
- Homeotic genes (homeo-box containing genes, for segment-specific genes)
- Tissue-specific genes

Embryo genome activation and developmental arrest

Dean J, NIH Research Images

Fine mapping of genome activation in bovine embryos by RNA sequencing

Alexander Graf^a, Stefan Krebs^a, Valeri Zakhartchenko^b, Björn Schwalb^c, Helmut Blum^{a,1,2}, and Eckhard Wolf^{a,b,1,2}

^aLaboratory for Functional Genome Analysis, ^bChair for Molecular Animal Breeding and Biotechnology, and ^cDepartment of Biochemistry, Center for Integrated Protein Science, Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany

Edited* by George E. Seidel, Colorado State University, Fort Collins, CO, and approved February 7, 2014 (received for review November 18, 2013)

During maternal-to-embryonic transition control of embryonic several hundred transcripts with increased abundance in tran-

Early embryo genome activation and developmental arrest

Fine mapping of genome activation in bovine embryos by RNA sequencing

Alexander Graf^a, Stefan Krebs^a, Valeri Zakhartchenko^b, Björn Schwalb^c, Helmut Blum^{a,1,2}, and Eckhard Wolf^{a,b,1,2}

⁴Laboratory for Functional Genome Analysis, ^bChair for Molecular Animal Breeding and Biotechnology, and ⁶Department of Biochemistry, Center for Integrated Protein Science, Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany

Edited* by George E. Seidel, Colorado State University, Fort Collins, CO, and approved February 7, 2014 (received for review November 18, 2013)

During maternal-to-embryonic transition control of embryonic several hundred transcripts with increased abundance in tran-

Epithelial markers in murine, porcine and bovine OECs

(Chen et al., 2017)

Embryo quality assessment

- Morphologic and morphometric analysis
- Correspondence between the culture time and the embryo developmental stage (time course)
- Correspondence between the number of blastomeres and nuclei
- Blastocyst expansion and hatching
- Metabolic tests
- Genomics
- Transcriptomics
- Proteomics
- Metabolomics

Conventional embryo morphology assessment (CMA)

Grade 3 Irregular size blastomeres

Non invasive pre-implantation genetic screening (NIPGS)

Fig 1. Non-invasive and invasive preimplantation genetic testing workflow.

https://doi.org/10.1371/journal.pone.0197262.g001

Metabolic tests to evaluate embryo viability

- Lactic dehydrogenase (LDH) activity
- Glucose, Glutamine, Pyruvate uptake
- Oxygen uptake

- "Culturing and evaluating the early embryo" in: Gordon I. Laboratory production of cattle embryo.
 CABI publications 2003, Chapter 7;
- "Assisted reproductive technologies and embryo culture methods for farm animals" in : Pinkert CA. Transgenic Animal Technology – A laboratory handbook. 2002. Chap 20.